Estas en:

Two-Level Classifier Ensembles for Coffee Rust Estimation in Colombian Crops

TítuloTwo-Level Classifier Ensembles for Coffee Rust Estimation in Colombian Crops
Tipo de PublicaciónJournal Article
Nuevas Publicaciones2016
AutoresCorrales, DC, Casas AF, Ledezma A, Corrales JC
JournalInternational Journal of Agricultural and Environmental Information Systems
VolumenVolume 7
EjemplarIssue 3
Start Page41 - 59
Año de publicación07-09/2016
ISBN1947-3192
Palabras claveClassifier, Coffee, Dataset, Ensemble, Rust
Resumen

Rust is a disease that leads to considerable losses in the worldwide coffee industry. There are many contributing factors to the onset of coffee rust e.g. Crop management decisions and the prevailing weather. In Colombia the coffee production has been considerably reduced by 31% on average during the epidemic years compared with 2007. Recent research efforts focus on detection of disease incidence using simple classifiers. Authors in the computer field propose alternatives for improve the outcomes, making use of techniques that combine classifiers named ensemble methods. Therefore they proposed two-level classifier ensembles for coffee rust estimation in Colombian crops using Back Propagation Neural Networks, Regression Tree M5 and Support Vector Regression. Their ensemble approach outperformed the classical approaches as simple classifiers and ensemble methods in terms

of Pearson’s Correlation Coefficient, Mean Absolute Error and Root Mean Squared Error.

URLhttps://www.igi-global.com/article/two-level-classifier-ensembles-for-coffee-rust-estimation-in-colombian-crops/163318
DOI10.4018/IJAEIS.2016070103

Carrera 2A # 3N – 111 Facultad de Ciencias Naturales y Exactas de la Educación | Telefax (+57 2)8209800 ext. 2607 | dicambientales@unicauca.edu.co
Universidad del Cauca
Popayán - Colombia
2017