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ABSTRACT

Rust is a disease that leads to considerable losses in the worldwide coffee industry. There are many 
contributing factors to the onset of coffee rust e.g. Crop management decisions and the prevailing 
weather. In Colombia the coffee production has been considerably reduced by 31% on average 
during the epidemic years compared with 2007. Recent research efforts focus on detection of disease 
incidence using simple classifiers. Authors in the computer field propose alternatives for improve the 
outcomes, making use of techniques that combine classifiers named ensemble methods. Therefore 
they proposed two-level classifier ensembles for coffee rust estimation in Colombian crops using Back 
Propagation Neural Networks, Regression Tree M5 and Support Vector Regression. Their ensemble 
approach outperformed the classical approaches as simple classifiers and ensemble methods in terms 
of Pearson’s Correlation Coefficient, Mean Absolute Error and Root Mean Squared Error.
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1. INTRODUCTION

Coffee rust is a leaf disease caused by the fungus, Hemileia vastatrix. Coffee rust epidemics, with 
intensities higher than previously observed, have affected a number of countries including: Colombia, 
from 2008 to 2011; Central America and Mexico, in 2012 - 2013; and Peru and Ecuador in 2013. 
There are many contributing factors to the onset of these epidemics e.g. the state of the economy, crop 
management decisions and the prevailing weather, and many resulting impacts e.g. on production, on 
farmers and labourers income and livelihood, and on food security. Production has been considerably 
reduced in Colombia (by 31% on average during the epidemic years compared with 2007) and 
Central America (by 16% in 2013 compared with 2011–12 and by 10% in 2013–2014 compared with 
2012–2013) (Avelino et al., 2015).

Since coffee rust has led to considerable losses in the industry worldwide, recent Brazilian 
supervised learning researchers have focused on estimation of the disease incidence, using simple 
classifiers as decision trees, support vector machines and bayesian networks (Cintra, Meira, Monard, 
Camargo, & Rodrigues, 2011; Luaces, Rodrigues, Alves Meira, & Bahamonde, 2011; Luaces et al., 
2010; C. Meira, Rodrigues, & Moraes, 2008; C. A. A. Meira, Rodrigues, & Moraes, 2009; Pérez-
Ariza, Nicholson, & Flores, 2012). They made use of numerical values of the infection rates which 
were mapped into two categories (or classes). The first option of the binary infection rate was with 
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value 1 for infection rates equal or greater than 5 percentage points (pp) and 0 otherwise. The second 
option was created, with value 1 for infection rates equal or greater than 10 pp, and 0 otherwise.

Meanwhile experts in computer science demonstrated that using a simple classifier is not accurate 
enough (Li, Zou, Hu, Wu, & Yu, 2013). This indicates that approaches such as those mentioned above 
(Cintra et al., 2011; Luaces et al., 2011; Luaces et al., 2010; C. Meira et al., 2008; C. A. A. Meira 
et al., 2009; Pérez-Ariza et al., 2012), which address the rust incidence rate detection using simple 
classifiers, lack of accuracy needed for predictions. Authors in the computer field suggested as an 
alternative solution to make use of techniques that combine classifier results (Ghosh, 2002; Ranawana 
& Palade, 2006) named ensemble methods.

Therefore, we proposed two-level classifier ensembles for coffee rust estimation in Colombian 
crops. The remainder of this paper is organized as follows: Section 2 describes the data collection and 
the algorithms used; Section 3 the algorithms used in the two-level classifier ensembles proposed; 
Section 4 presents results and discussion and Section 5 conclusions and future work.

2. BACKGROUND

This section describes the data collection process and the generation of the dataset used in experiments, 
introduces algorithms which comprise the two-level classifier ensembles.

2.1. Data Collection
The data used in this work were collected (Corrales et al., 2014) trimonthly for 18 plots (1, 2, 3, 
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 37, in the Figure 1), closest to weather station at the 
Technical Farm (Naranjos) of the Supracafé, in Cajibio, Cauca, Colombia (21°35’08” N, 76°32’53” 
W), during the last 3 years (2011-2013). The dataset includes 147 examples from the total of 216 
available ones. The remaining 69 samples were discarded due to problems in the collection process.

The dataset is composed of 13 attributes that are divided in 3 categories: Weather conditions 
(6 attributes), Physic crop properties (3 attributes), and crop management (4 attributes). Below are 
described the 13 attributes (Table 1):

In this sense, the class was defined as, the Incidence Rate of Rust (IRR). IRR is calculated 
by following a unique methodology in Colombian coffee crops collection developed by Cenicafé 
(Rivillas-Osorio, Serna-Giraldo, Cristancho-Ardila, & Gaitán-Bustamante, 2011) for a plot with 
lower or equal area to one hectare. The methodology steps are presented below:

Figure 1. Technical Farm: Los Naranjos (source: authors own elaboration)
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1. 	 The farmer must be standing in the middle of the first furrow and he has to choose one coffee 
tree and pick out the branch with greater foliage for each level (high, medium, low); the leaves 
of the selected branches are counted as well as the infected ones for rust.

2. 	 The farmer must repeat the step 1 for every tree in the plot until 60 trees are selected. Take in 
consideration that the same number of trees must be selected in every furrow (e.g. if plot has 30 
furrows, the farmer selects two coffee trees for each furrow).

3. 	 Finished the step 1 and 2, the leaves of the coffee trees selected (LCT ) are added as well as the 
infected leaves of rust ( ILR ). Later, the (Rust Incidence Rate) (RIR) using the following formula, 
must be computed:

IRR
ILR

LCT
= 100 	 (1)

The collection process and IRR computation spend large amount of money and time, for this 
reason, the IRR samples are limited (trimonthly for 18 plots). This process and its samples are 
considered very important, since it provides a rust coffee crops approximation.

Table 1. Dataset for Incidence Rate of Rust Estimation
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2.2. Supervised Learning Techniques
This section provides a short description of base classifiers of the two-level classifier ensembles for 
coffee rust estimation in Colombian crops (Backpropagation neural network, Regression Tree and 
Support Vector Machine) and briefly reviews the four main ensemble methods, including: Bagging, 
Random subspace, Rotation forest and Stacking.

The classifiers learn by examples that map input vectors into one of several desired output classes. 
That is, a pattern classifier can be created through the training or learning process. The learning process 
of creating a classifier is to calculate the approximate distance between input–output examples and 
make correct output labels of the training set. This process is called the model generation phase. 
When the model is generated, it can classify an unknown instance into one of the learned classes in 
the training set (Mitchell, 1997). Below are presented the base classifiers of the two-level classifier 
ensembles for coffee rust estimation. For ease and uniformity of paper the examples for each classifier 
are focused on coffee rust disease.

2.2.1. Backpropagation Neural Network
Backpropagation neural network (BPNN) is a feed forward neural network used to capture the 
relationship between the inputs and outputs (Poh, 1991). The neural network is trained using 
backpropagation algorithm (Haykin, 2003), where the error in the output layer is propagated backwards 
to adjust the weights in the hidden layers. In the backpropagation training algorithm the error in the 
output neuron q  is given by

δ
p q q q q

o t o= −( ) −( )�o � �1 	 (2)

Where o
q

and t
q

are the actual and desired outputs of neuron q  in the output layer, respectively. 
The weight from neuron p  in the hidden layer to neuron q  in the output layer is adjusted using

W n W n o
pq pq q p

+( ) = ( )+1 �· δ 	 (3)

Where ·  is the learning rate coefficient, 0 < ·  < 1, and W n
pq ( )  and W n

pq
+( )1  are the weights 

before and after adjustment, respectively. The error in the output layer is propagated backwards to 
adjust the weights in the hidden layers. The error in neuron p  in the hidden layer is obtained using

δ δ
p p p

q
q pq

O O W n= −( ) +( )∑� 1 1 	 (4)

The error δ
p

 is used to adjust the weights connecting to neuron p  in the hidden layer. This 
process is repeated for all the hidden layers. Application of all inputs once to the network and adjusting 
the weights is called an epoch. In the backpropagation training algorithm, the network weights are 
adjusted for certain number of epochs to map the relationship between inputs and outputs (Suhasini, 
Palanivel, & Ramalingam, 2011). In this work, a three layer feedforward neural network is used with 
a learning rate · = 0 3. .

Figure 2 shows an Artificial Neural Network (ANN) that detects the Incidence Rate of Rust 
(IRR) in coffee one month beforehand. This ANN is comprised of input, hidden and output layers. 
The input layer receives the number of consecutive days with relative humidity above 85% (DRH), 
number of consecutive days with rain at night (DRN), and the percentage of shade in the lot (PSL). 
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The hidden layer further solves problems when the data are not linearly separable, this way different 
hidden layers can be used depending on the organization of the data. Finally, the output layer calculates 
the Incidence Rate of Rust (Corrales, Corrales, & Apolinar, 2015).

2.2.2. Decision Tree
Decision trees (DT) are algorithms that allow the approximation of functions of discrete and continuous 
values, beginning with the generation of a set of rules. DTs classify the values that attributes (called 
instances) can take in a tree, where each node represents an instance of an attribute, and each branch 
descending from the node corresponds to one of the possible values that the attribute can take 
(Mitchell, 1997). In other words, the DTs seek the instance that has the closest relationship with the 
target variable, dividing the dataset into subsets according to attribute. The procedure is repeated 
until the established criterion is satisfactorily met (Meyfroidt, Güiza, Ramon, & Bruynooghe, 2009).

We use a variant of DT for numerical classes called Regression Tree (M5) with a minimum 
proportion of the variance on all the data that needs to be present at a node of 0.001.

Figure 3 shows a case study carried out in (Cintra et al., 2011) to detect the appearance of rust in 
coffee, making use of a decision tree and taking into account the attributes of relative humidity (RH), 
average maximum temperature for the rust incubation period (AMTIP), and average temperature (AT). 
Each attribute is represented by an intermediate node depending on its value. It will take different 
paths to reach a leaf node. The leaf nodes of the tree correspond to a particular category of the target 
variable (class), in this case 0 (when there is no rust) and 1 (when rust is detected).

2.2.3. Support Vector Machine
Support vector machine (SVM) is a method proposed by Vladimir Vapnik for solving classification 
and regression problems. The basic operation begins with a set of points, which in turn contains 
two subsets of points, in which each one belongs to one of two possible classes (Vapnik, 1995). 
Based on this, the support vector machine searches for the greatest distance (maximum margin) 
that separates the classes by way of a hyperplane, in order to build a model that is able to predict 
whether a new point (of unknown class) belongs to one class or the other. This method is applied as 
long as the set of points are linearly separable (Ayodele, 2010). Otherwise the input data must first 

Figure 2. Incidence rate of rust detection through artificial neural networks (source: authors own elaboration)
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be transformed to a new space, usually to a higher dimension where classes are linearly separable. 
The process of transformation of spaces is performed implicitly by a kernel function which allows 
all the calculations to be performed in the input space. This process is called kernel trick (Karimi, 
Prasher, Patel, & Kim, 2006).

For our two-level classifier ensembles approach was used a variant of SVM for numerical classes 
called Support Vector Regression (SVR) (Weimin & Leping, 2008) with a Gaussian radial basis 
function, soft margin parameter C = 5 0.  and insensitive cost function parameter  = 0 01. .

The following is an example of linearly separable binary SVM for the classification of leaves 
infected with rust. Figure 4 presents the possible hyperplanes that separate healthy leaves and infected 
leaves. In this context, SVM is searching for the hyperplane that optimally separates the two leaf 
types (Corrales, Corrales, et al., 2015).

On the other hand, an ensemble of classifiers is a collection of several classifiers whose individual 
decisions are combined in some way to classify the test examples (Skurichina & Duin, 2002). In the 
literature, there is a number of ensemble methods, e.g. Bagging, Random subspace, Rotation forest, 
Stacking, Cascading, Boosting, etc. Next are presented the four main ensemble methods.

2.2.4. Bagging
In its standard form, the bagging (Bootstrap Aggregating) algorithm (Corrales, Ledezma, & Corrales, 
2015b) generates M  bootstrap samples T T T

M1 2
, , . . .,  randomly drawn (with replacement) from 

the original training set T  of size n . From each bootstrap sample T
i
 (also of size n ), a base classifier 

C
i
 is induced by the same learning algorithm. Predictions on new observations are made by taking 

the majority vote of the ensemble C *  built from C C C
M1 2

, , . . ., . As bagging resamples the training 
set with replacement, some instances may be represented multiple times while others may be left out. 
Since each ensemble member is not exposed to the same set of instances, they are different from each 

Figure 3. Detection of coffee rust using decision tree (source: authors own elaboration)
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other. By voting the predictions of each of these classifiers, bagging seeks to reduce the error due to 
variance of the base classifier (Marqués, García, & Sánchez, 2012).

2.2.5. Random subspace
The random subspace method (RSM) is an ensemble construction technique, in which the base 
classifiers C C C

M1 2
, , . . .,  are trained on data sets T T T

M1 2
, , . . .,  constructed with a given proportion 

of attributes picked randomly from the original set of features F . The outputs of the models are then 
combined, usually by a simple majority voting scheme. The author of this method suggested to select 
about 50% of the original features. This method may benefit from using random subspaces for both 
constructing and aggregating the classifiers. When the data set has many redundant attributes, one 
may obtain better classifiers in random subspaces than in the original feature space. The combined 
decision of such classifiers may be superior to a single classifier constructed on the original training 
data set in the complete feature space. Moreover, when the number of training cases is relatively 
small compared with the data dimensionality, by constructing classifiers in random subspaces one 
may solve the small sample size problem (Marqués et al., 2012; Tin Kam, 1998).

2.2.6. Rotation Forest
Rotation forest (Corrales, Ledezma, & Corrales, 2015a) refers to a technique to generate an ensemble 
of classifiers, in which each base classifier is trained with a different set of extracted attributes. The 
main heuristic is to apply feature extraction and to subsequently reconstruct a full attribute set for 
each classifier in the ensemble. To this end, the feature set F  is randomly split into L  subsets, 
principal component analysis (PCA) is run separately on each subset, and a new set of linear extracted 
attributes is constructed by pooling all principal components. Then the data are transformed linearly 
into the new feature space. Classifier C

i
 is trained with this data set. Different splits of the feature 

set will lead to different extracted features, thereby contributing to the diversity introduced by the 
bootstrap sampling (Marqués et al., 2012).

2.2.7. Stacking
Stacking is an ensemble technique that uses a meta-learner for determining which classifiers are reliable 
and which are not. Stacking is usually employed to combine models built by different inducers. The 
idea is to create a meta-dataset containing a tuple for each tuple in the original dataset. However, 
instead of using the original input attributes, Stacking uses the classifications predicted by the base-
classifiers as the input attributes. The target-attribute remains as in the original training-set. A test 
instance is first classified by each of the base-classifiers. These classifications are fed into a meta-level 

Figure 4. (a) Possible hyperplanes (b) Optimal hyperplane using SVM (source: authors own elaboration)
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training-set to produce a meta-classifier. The meta-classifier that has been produced combines the 
different predictions into a final prediction. In order to avoid over-fitting of the meta-classifier, the 
instances used for training the base-classifiers should not be used to train the meta-classifier. Thus 
the original dataset should be partitioned into two subsets. The first subset is reserved to form the 
meta-dataset while the second subset is used to build the base-level classifiers. Consequently, the 
meta-classifier predictions reflect the true performance of base-level learning algorithms (Menahem, 
Rokach, & Elovici, 2009).

3. CONSTRUCTING TWO-LEVEL CLASSIFIERS ENSEMBLES

The ensemble approach for coffee rust estimation here proposed is focused on the use of multiple 
classifiers in such a way that each of the classifiers (BPNN, M5 and SVR) covers a different part 
of the dataset. All of this with the objective to integrate the classification results and produce the 
final classification (Figure 5). In addition, we used the interquartile range and k-mean algorithms to 
improve the performance in the dataset in data analysis module.

3.1. Data analysis
This module examines data which deviate so much from other data (Corrales, Ledezma, et al., 2015a) 
through outliers analysis sub-module, besides Data Analysis module (DA) defines the amount of 
base classifiers of the ensemble approach for coffee rust estimation supported by cluster analysis 
sub-module. This module is handled by an expert in data analysis such as: data scientist, a data 
analyst, a data miner, etc.

3.1.1. Outliers Analysis
The outlier’s analysis sub-module detects and removes the values that have an abnormal behavior of 
an attribute into the dataset through Interquartile Range Method (IR). This method computes the 
quartile Q

1
, Q

2
, Q

3
, which split a sort dataset in four parts (McAlister, 1879), after, computing the 

interquartile range (IQR), which is the difference among the Third quartile (Q
3
) and First quartile (

Q
1

). The IQR  is a measure of noise for the data set. Points that are beyond the quartiles by half 
IQR’s will be deemed potential outliers (Grubbs, 1969). Below is presented the mathematic 
representation:

x q x IQR x q x IQR x< − ∨ > + ∀ ∈
1 3
1 5 1 5� � � �� �� � � � � �. . ; � �R 	 (5)

Where, x  is the observation to evaluate and q x IQR
1
1 5− . denote the lower inner fences and 

q x IQR
3
1 5+ .  the upper inner fences. Hence points beyond these fences are potential outliers. In 

this case the Interquartile Range Method was applied to the class - Incidence Rate of Rust (IRR). The 

Figure 5. Workflow of two-level classifiers ensembles for coffee rust estimation (source: authors own elaboration)
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outcomes obtained to apply IR, presented as lower inner fence -2.0156 and upper inner fence 11.84, 
thus, are removed 9 observations with values of IRR: 12.41%, 13.01%, 13.1%, 13.5%, 13.6%,13.6%, 
14.5%, 16.5%, 20.50% greater than upper inner fence 11.84% as we can see in Figure 6.

3.1.2. Cluster Analysis
The cluster analysis sub-module, builds clusters from data set (leaving out the IRR class) with K-means 
algorithm k =( )3 . The k-means algorithm partitions a set of data into a number k  of disjoint clusters 
by looking for inherent patterns in the set. Let us suppose that X  represents the available set of 
samples. Each sample can be represented by an m -dimensional vector in the Euclidean space Rm . 
Thus, in the following, X x x x

n
= …{ }1 2

, , ,  will represent a set of n  samples, where the generic 
sample x

i
 is a m -dimensional vector (Mucherino, Papajorgji, & Pardalos, 2009). Each cluster is a 

subset of X  and contains samples with some similarity. The distance between two samples provides 
a measure of similarity: it shows how similar or how different two samples are. In the k-means 
approach, the representative of a cluster is defined as the mean of all the samples contained in the 
cluster (Mucherino et al., 2009).

3.1.3. Interpretation of Clusters
Once the k-means is used each cluster is transformed in a data training set. The basic idea is to know 
the meaning of the clusters and define an expert classifier for each cluster. Next is explained the 
interpretation of the clusters through Bayesian Network and Decision Tree.

We used a Bayesian network (Araujo, 2006) to build a conditional probability distribution for 
clusters generated by k-means k =( )3  and four main attributes: coffee rust control in the last month 

Figure 6. Box-plot of Infection Rate of Rust (source: authors own elaboration)
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(CRC1M), coffee rust control in the last 3 months (CRC3M), fertilization in the last 4 months (F4M) 
and incidence rate of rust (IRR), as can be seen in Table 2.

For cluster C
1
, when it was done a coffee rust control in the last month and 3 months (45.3% 

- CRC1M = “Yes” and 98.3% - CRC3M = “Yes”), exists a probability distribution unequal and 
incoherent instances, because if the majority of instances of CRC3M shows that it was done a coffee 
rust control, mandatorily the instances of CRC1M must present the same behavior.

For another part, for C
2

, the attributes of CRC1M, CRC3M and F4M present a similar behavior, 
which we can interpret: the instances in C

2
 has not done rust controls and fertilizations on coffee 

crops (probability distribution of “Not” values: 99%, 72.1% and 79.8% respectively), whereas 
probability distribution of CRC1M, CRC3M and F4M attributes of C

3
 indicates the use of coffee 

rust controls and fertilizations (probability distribution of “Yes” values: 88.6%, 58.8% and 99.1% 
respectively); for this reason, the Incidence Rate of Rust is less than 7.18% (probability distribution 
of IRR < 7.18% = 98.70%).

To test out the outcomes obtained by Bayesian Network, we used a C4.5 Decision Tree (pruning 
the irrelevant attributes) (Quinlan, 1993), as can be seen in Figure 7.

In Figure 7, the C4.5 decision tree accounted 3 attributes: Coffee rust control in the last month 
(CRC1M), Hours of relative humidity > 90% in the last month (HRH1M), and Crop Age (CA) in 
months. The distribution of instances is found in the leaves. In this sense the rule obtained for cluster 
C
1
 (Figure 7) does not contain the necessary attributes to know the meaning of C

1
 (CRC1M and 

HRH1M); unlike of C
2

 where conditions promote the appearance of rust, because there was not 
done a coffee rust control in the last month, high hours of relative humidity > 90% in the last month 
(> 341 hours), and older crops (age > 50 months). Finally, C

3
 can be interpreted as the youngest 

crops (age < 48 months) that are resistant to rust without regard for conditions of relative humidity 
and coffee rust controls performed.

Based on the foregoing, we interpret the C
2

 cluster as the cases where conditions induce high 
losses in crops caused by rust (IRR ≥7.18%), while C

3
 cluster presents the cases with low risk of 

losses in crops (IRR < 7.18%).

3.3.2. Building the Clusters
To choose the k suitable, the k-means algorithm was tested with � , ,k� � � �= 2 3 4  and the Euclidean 
distance. The clusters are displayed with CLUSPLOT graphic library, which creates a bivariated plot 
visualizing a partition (clustering) of the data (Corrales, Ledezma, et al., 2015b). All observation 
(instances) are represented by points in the plot, using Principal Components Analysis (relative to 
the first two principal components) (Corrales, Ledezma, et al., 2015a). The clusters 
C C C k n

n1 2
, , , ; ,…{ } =  are again represented as ellipses, which are based on the average and the 

Table 2. Percentage of conditional probability distribution for clusters generated by k-means
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covariance matrix of each cluster; and their size is such that they contain all the points of their cluster 
(Figure 8).

The Figure 8a presents the k-means algorithm with k = 2 , where the points of C
1
 has 

misclassified in correspondence to C
2

, in this way, we cannot differentiate the C
1
 from the C

2
. On 

the other hand, k = 3  (Figure 8b), C
2

 and C
3

 are completely distinct. However, most of the points 
of C

1
 were misclassified asC

3
. Lastly, k = 4  (Figure 8c), C

1
, C

2
 and C

4
 are overlapped, while 

the C
3

 differ of the other clusters.
In this sense, we define the k-means algorithm with k = 3  (Figure 8b), because its clusters C

2
 

and C
3

 are completely distinct. C
1
 has misclassified points due to its belonging to C

2
 and C

3
, 

besides the incoherent instances found by Bayesian Network and C.4 Decision Tree. For this reasons, 

Figure 7. C4.5 decision tree for clusters generated by k-means (source: authors own elaboration) 

Figure 8. K-means algorithm with k = 2, 3, 4 displayed with CLUSPLOT (source: authors own elaboration)
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the observations of C
1
 were deleted (29 instances) to avoid the noise. The new dataset has 109 

instances, 52 of C
2

 and 57 ofC
3

.
Once defined the final clusters (C

2
 and �C

3
) we create three base classifiers for construction of 

the ensemble approach for coffee rust estimation which are explained below.

3.2. Ensemble Approach for Coffee Rust Estimation
Ensemble approach for coffee rust estimation is constructed based on data analysis module with 
two-level classifiers ensembles: the first level contains a Backpropagation neural network (BPNN) 
named dispatcher classifier responsible for deciding which classifier of second level will estimate 
the incidence rate of rust (IRR). The second level contains expert classifiers to solve a specific task, 
in this case, we define two classifiers: the first classifier of second level (Figure 5 as coffee rust 
classifier: 0% - 7.18%) trains a support vector regression (SVR) with instances of C

3
 with aim to 

detect the incidence rate of rust among 0% and 7.18% whereas the second classifier of second level 
(Figure 5 coffee rust classifier: 7.18% - 15%) trains a regression tree (M5) with instances of C

2
 to 

classify the incidence rate of rust among 7.18% and 15%. The number of classifiers of second level 
change according to cluster analysis and size of dataset as we can see in Figure 9; seen in this light, 
we can get n  classifiers of second level where each classifier detects the incidence rate of rust (IRR) 
among IRR IRR

n n− −



1

� . Our processed dataset contains 109 instances with IRR values among 0% 
and 15%.

In this way, the final user types the inputs (weather conditions, physic crop properties, and crop 
management) and the ensemble approach returns the estimation of infection rate of rust.

4. EXPERIMENTAL RESULTS

This section reports a number of experiments carried out to select the base classifiers used to detect 
the coffee rust incidence rate. Here we compare the results obtained by the ensemble approach against 
classical approaches as: simple classifiers and ensemble methods. With the dataset introduced in 
Section 2.1, we used a 10-fold cross validation to estimate the scores reported in the following figure 
and tables.

Figure 9. Two-level classifiers ensembles for coffee rust estimation (source: authors own elaboration
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4.1. Selection of Base Classifiers
The families of supervised learning algorithms assessed were: Support Vector Machines, Neural 
Networks, Bayesian Networks, Decision Trees, and K nearest neighbors. The selection criteria of 
these classifiers are based on previous surveys which show the suitable learners for classification 
and predictions tasks (Bhavsar & Ganatra, 2012; Kotsiantis, 2007), especially in the detection of 
crop diseases.

4.1.1. Dispatcher Classifier
We tested the most relevant algorithms of supervised learning for classification tasks as Support Vector 
Machine (SVM), Backpropagation Neural Network (BPNN), Naive Bayes (NB), C4.5 Decision Tree, 
and K nearest neighbors (K-NN) (Corrales, Corrales, et al., 2015) to choose the dispatcher classifier, 
computing precision, recall and F- measure as seen in Table 3.

The supervised learning algorithms in Table 3 present values greater than 88.6% for Precision, 
87.4% for Recall and 87.5% for F-measure, which indicates low false positives and good outcomes to 
classify new instances. However, these measures are insufficient to choose the dispatcher classifier 
considering that SVM and BPNN have the same values (Precision, Recall and F-measure 99.3%). For 
this reason, we used the ROC Curve for evaluating the SVM and BPNN such as shows in Figure 10.

In this regard, the curves showed a good performance of SVM (Figure 10a) and BPNN (Figure 
10b) to classify correctly new instances, with an area under a curve of 99.1% for SVM and 100% of 
BPNN. Based on the above, the Backpropagation neural network was selected as dispatcher classifier.

Table 3. Precision, Recall and F-measure for SVM, ANN, BN, DT and K-NN

Figure 10. Roc curves for (a) SVM (b) BPNN (source: authors own elaboration)



International Journal of Agricultural and Environmental Information Systems
Volume 7 • Issue 3 • July-September 2016

54

4.1.2. Classifiers of Second Level
We tested the main learning algorithms for prediction tasks as Support Vector Regression (SVR), 
Multilayer Perceptron (MP), Radial Basis Function Network (RBFN), K Nearest Neighbors Regression 
(K-NN R) and Regression Tree (M5) (Corrales, Corrales, et al., 2015) to choose the Classifiers of 
second level through Pearson’s Correlation Coefficient (PCC), Mean Absolute Error (MAE) and 
Root Mean Squared Error (RMSE) as seen in Table 4 and Table 5.

In Table 4, the M5 regression tree is approaching a directly proportional relation (PCC = 0.51) 
among Incidence Rate of Rust Detected (IRRP) and Incidence Rate of Rust Real (IRRR). In that 
manner M5 presents the least difference among IRRP and IRRR with MAE = 1.83% and RMSE = 
2.16%. In accordance with the above, the M5 regression tree was selected as first classifier of second 
level (1st-classifier-2nd level).

In Table 5, K-NN R and SVR have highest value for positive correlations (PCC= 0.37 and PCC 
= 0.36 respectively), however, SVR presents the least difference among IRRP and IRRR (MAE = 
1.20% and RMSE = 1.73%) regard to K- NN R (MAE = 1.31% and RMSE = 1.86%). Based on the 
above, SVR was selected as second classifier of second level (2nd-classifier-2nd level). 

4.2. Evaluation of the Ensemble Approach for Coffee Rust Estimation
This section presents the results obtained by the ensemble approach against simple classifiers and 
classical ensemble methods.

4.2.1. Ensemble Approach vs. Simple Classifiers
Table 6 compares the outcomes obtained by the ensemble approach against simple classifiers as 
Support Vector Regression (SVR), Back Propagation Neural Network (BPNN), and Regression Tree 
(M5) which were tested in (Corrales et al., 2014) with the same dataset.

The outcomes obtained by ensemble approach are better than simple classifiers; especially 
for 2nd-classifier-2nd level where the instances are closer to each other regard to instances of 1st-
classifier-2nd level (Figure 8 for k = 3).

Table 4. Comparison: SVR, MP, RBF, K-NN R, M5 for selection of 1st-classifier-2nd level

Table 5. Comparison: SVR, MP, RBF, K-NN R, M5 for selection of 2nd-classifier-2nd level
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4.2.2. Ensemble Approach vs. Classical Ensemble Methods
Table 7 compares the outcomes obtained by the ensemble approach against classical ensemble methods 
as Bagging, Random subspaces, Rotation forest and Stacking. The classical ensemble methods as 
Bagging used M5 as base classifier, Random subspaces: K- NN R, Rotation forest: M5, Stacking 
three base classifiers: BPNN, K- NN R, M5 and SVR as meta-learner. We choose the four ensemble 
methods as the best outcomes to use the dataset explained in section 2.1.

The outcomes obtained by ensemble approach are better than classical ensemble methods. 
Bagging is the ensemble method with better results; nevertheless, simple classifiers as BPNN (PCC 
= 0.35; RMSE = 3.31%) and SVR (MAE = 2.28%) outperformed the results obtained by Bagging 
(PCC = 0.27; MAE = 2.38%; RMSE = 3.34%).

4.3. Discussion
The results presented previously show an improvement compared to simple classifiers and classical 
ensemble methods, nevertheless the errors rate remain above 1.20 percentage points of Infection Rate 
of Rust (IRR), due to dataset is very small and IRR is scattered with few values in a widely range 
(0% - 20%), as we can see in Table 8:

In this way the initial dataset has 147 instances, of which 9 instances were removed by outlier 
analysis module, 29 instances by cluster analysis, and the remaining 109 instances were used in the 
ensemble approach for coffee rust estimation in Colombian crops. The main drawback is the amount 
of instances; if the available examples are few perhaps the dataset does not represent a sample of 
the population.

Table 6. Comparison of ensemble approach and simple classifiers

Table 7. Comparison of ensemble approach and classical ensemble methods
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5. CONCLUSION AND FUTURE WORK

This paper presented an ensemble approach for coffee rust estimation in Colombian crops. Our 
ensemble approach outperformed the classical approaches as simple classifiers and ensemble 
methods in terms of Pearson’s Correlation Coefficient (0.51 of 1st-classifier-2nd level and 0.36 of 
2nd-classifier-2nd level respect to 0.35 of Back Propagation Neural Networks and 0.27 of Bagging), 
Mean Absolute Error (1.83% of 1st-classifier-2nd level and 1.20% of 2nd-classifier-2nd level respect 
to 2.28% of Support Vector Regression and 2.38% of Bagging) and Root Mean Squared Error (2.16% 
of 1st-classifier-2nd level and 1.73% of 2nd-classifier-2nd level respect to 3.31% of Back Propagation 
Neural Networks and 3.34% of Bagging) which use the same dataset of coffee rust. The limitation 
encountered during this study was the absence of data from actual coffee crop. Especially in rust 
incidence rate examples due to the expensive collection process that requires big efforts in money 
and time. Accordingly, the results obtained on this study are not very precise.

In future studies we intend to tackle the insufficient data using different approaches such as 
synthetic data and incremental learning, which update the hypothesis of classifier using new individual 
data instances, without having to re-process past instances (Schlimmer & Granger, 1986). Also we 
will propose the use of weather time series data which are automatically capture each five minutes 
in weather station. We will analyze its behavior with the rust infection rate.
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Table 8. Number of Instances for Ranges of IRR

Instances Range of IRR

21 0% - 2.27%

43 2.27% - 4.55%

47 4.55% - 6.83%

21 6.83% - 9.11%

6 9.11% -11.38%

6 11.38% - 13.66%

1 14.5%

1 16.5%

1 20.5%
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